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Abstract. Equations of shape invariance have been derived on the homogeneous manifold
SL(2, c)/GL(1, c), by means of which the Dirac equation is solved for a charged spin-1

2 particle
in the presence of a magnetic monopole. The Dirac spinors on this manifold are written in terms
of the master function. It is shown that these spinors represent anN = 1 chiral supersymmetry
algebra and a unitary parasuperalgebra of arbitrary orderp.

Over the last few years, the ideas of supersymmetry [1] and shape invariance [2, 3] have
been successfully applied to many simple quantum mechanical systems. Supersymmetry
is a symmetry between bosonic and fermionic degrees of freedom. Supersymmetry
transformations are connected Hamiltonians of two systems in supersymmetric quantum
mechanics. These two Hamiltonians have, except for the ground state, the same spectra.
Later, the above significant concept for supersymmetric quantum mechanics was extended to
the concept of shape invariance. The Hamiltonians satisfy the shape invariance condition,
and the corresponding spectra and wavefunctions are exactly determined by elementary
calculations and algebraic procedures. In [3] a selection of special functions were obtained
as solutions of the Schrödinger equation with shape invariance potentials. From the existence
of shape invariance symmetry, supersymmetry extends to parasupersymmetry [4–6] which
describes symmetry between bosons and parafermions. In usual supersymmetric quantum
mechanics, the symmetry generators obey structure relations that involve bilinear products,
whereas in parasupersymmetric quantum mechanics of orderp, the structure relations
involve products of(p + 1) parasupersymmetry charges. It is pointed out that while in
supersymmetric quantum mechanics the energy eigenvalues are necessarily non-negative, in
parasupersymmetric quantum mechanics of orderp they need not be so. These important
arguments have begun with quantum mechanical problems in one-dimensional space. Of
course there have been some attempts to solve the Schrödinger equation for two-dimensional
potentials from the shape invariance approach [7–9].

In this paper, using the ideas of supersymmetric quantum mechanics and shape invariance
we obtain a solution of the Dirac equation for a charged particle with spin1

2 on the homogeneous
manifoldSL(2, c)/GL(1, c) in the presence of a magnetic monopole field. In fact, one can
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infer that supersymmetry, shape invariance and parasupersymmetry are represented by Dirac
spinors on homogeneous manifoldsSU(2)/U(1), SU(1, 1)/U(1) andH4/(U(1)⊗U(1)) as
real forms of theSL(2, c)/GL(1, c) manifold.

The paper is arranged as follows. In section 2 operators of thegl(2, c) Lie algebra on
the group manifoldSL(2, c) have been derived in terms of the master function and a weight
function. Then, by reducing the parameterGL(1, c) from a representation of thegl(2, c) Lie
algebra, we deduce the operators which describe the shape invariance on the homogeneous
manifoldSL(2, c)/GL(1, c). Also, we introduce the metric of this manifold in terms of the
master function. In section 3, it is shown that shape invariance obtained on aSL(2, c)/GL(1, c)
manifold culminates in the solution of the Dirac equation on this manifold for a charged particle
in the presence of a magnetic monopole. In section 4 it has been shown that Dirac spinors on a
SL(2, c)/GL(1, c)manifold represent anN = 1 chiral supersymmetry algebra. In section 5,
by using the shape invariance obtained in section 3, we show that spinors realize a shape
invariance as if they were obtained by an algebraic procedure. Then, by means of some suitable
parafermionic and bosonic generators, we consider a representation of the parasuperalgebra
of arbitrary orderp by Dirac spinors on the homogeneous manifoldSL(2, c)/GL(1, c).

2. Shape invariance symmetry on the homogeneous manifoldSL(2, c)/GL(1, c)

In [3, 8], for a given master functionA(x) which is a polynomial of at most degree two, the
weight functionW(x) and the interval [a, b] are allocated such thatA(x)W(x) and all of its
derivatives are zero at the end points. The associated differential equations of mathematical
physics have been introduced in terms of the master functionA(x) as follows:

A(x)8′′n,m(x) +
(A(x)W(x))′

W(x)
8′n,m(x) +

[
−1

2
(n2 + n−m2)A′′(x) + (m− n)

(
A(x)W ′(x)
W(x)

)′
−m

2

4

(A′(x))2

A(x)
− m

2

A′(x)W ′(x)
W(x)

]
8n,m(x) = 0 m = 0, 1, 2, . . . , n

(2.1)

where the associated special functions are introduced as its solutions:

8n,m(x) = an(−1)m

Am/2(x)W(x)

(
d

dx

)n−m
(An(x)W(x)). (2.2)

These special functions depend on two indices, one of which is the main indexn and the other
is the associated indexm, wheren is a natural number andm = 0, 1, . . . , n. With the change
of variable as

dx

dθ
=
√
A(x) (2.3)

and using equation (2.1) we obtain the following shape invariance equations [3]:

B(m)A(m)ψn,m(θ) = E(n,m)ψn,m(θ)
A(m)B(m)ψn,m−1(θ) = E(n,m)ψn,m−1(θ)

(2.4)

where

B(m) = d

dθ
+Wm(θ)

A(m) = − d

dθ
+Wm(θ)

(2.5)
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and

ψn,m(θ) = an(−1)m
{
A(−2m+1)/4(x)W−1/2(x)

(
d

dx

)n−m(
An(x)W(x)

)}
x=x(θ)

. (2.6)

The superpotentialWm(θ) and the spectrumE(n,m) have already been introduced as the
following equations:

Wm(θ) = −
1
2(A(x)W

′(x)/W(x)) + 1
4(2m− 1)A′(x)√

A(x)

∣∣∣∣
x=x(θ)

(2.7)

E(n,m) = −(n−m + 1)

[(
A(x)W ′(x)
W(x)

)′
+

1

2
(n +m)A′′(x)

]
. (2.8)

So studying shape invariance onm resulted in introducing a bunch of one-dimensional
superpotentials (2.7). This dimension is due to the space coordinateθ , that was naturally
obtained from the master functionA(x) by a change of variable (2.3).

From now on we shall only consider the case in whichA′ 2(0)− 2A′′A(0) > 0.
In order to introduce the operators of thegl(2, c) Lie algebra on the group manifold

SL(2, c), we define a new parameterl as

l := −1

2

(
AW ′

W

)
(0). (2.9)

We present appropriate variablesψ andφ corresponding tom andl, respectively, as follows:
in the raising and lowering operatorsB(m) andA(m) we replace−i∂/∂ψ for m − 1 andm,
respectively, and also substitute− 1

2i
√
A′ 2(0)− 2A′′A(0) ∂/∂φ for l in both operators to obtain

the following generators:

J+ = eiψ

(
∂

∂θ
− i

2

√
A′ 2(0)− 2A′′A(0)

A(x)

∂

∂φ
+

iA′(x)
2
√
A(x)

∂

∂ψ

− 1

2
√
A(x)

(
AW ′

W

)′
x − A′(x)

4
√
A(x)

)

J− = e−iψ

(
− ∂

∂θ
− i

2

√
A′2(0)− 2A′′A(0)

A(x)

∂

∂φ
+

iA′(x)
2
√
A(x)

∂

∂ψ

− 1

2
√
A(x)

(
AW ′

W

)′
x +

A′(x)
4
√
A(x)

)
.

(2.10)

Here, θ , φ andψ are an appropriate parametrization for the group manifoldSL(2, c) [9].
These operators together with

J3 = −i
∂

∂ψ
I = 1 (2.11)

satisfy thegl(2, c) Lie algebra

[J+, J−] = −A′′(x)J3−
(
AW ′

W

)′
I

[J3, J±] = ±J±
[J, I ] = 0.

(2.12)
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Using the shape invariance (2.4), the representation of thegl(2, c) Lie algebra on the group
manifoldSL(2, c) is given by

J+ψn,l,m(θ, φ, ψ) =
√
E(n,m + 1) ψn,l,m+1(θ, φ, ψ)

J−ψn,l,m(θ, φ, ψ) =
√
E(n,m)ψn,l,m−1(θ, φ, ψ)

J3ψn,l,m(θ, φ, ψ) = mψn,l,m(θ, φ, ψ)
Iψn,l,m(θ, φ, ψ) = ψn,l,m(θ, φ, ψ)

(2.13)

where the bases of representation are

ψn,l,m(θ, φ, ψ) = exp

(
2il√

A′ 2(0)− 2A′′A(0)
φ + imψ

)
ψn,m(θ). (2.14)

The bases (2.14) also depend on parameterl through the weight functionW(x). Indeed, for
functionsψn,l,m(θ, φ, ψ) the shape invariance (2.4) is written as

J+J−ψn,l,m(θ, φ, ψ) = E(n,m)ψn,l,m(θ, φ, ψ)
J−J+ψn,l,m−1(θ, φ, ψ) = E(n,m)ψn,l,m−1(θ, φ, ψ).

(2.15)

Since eitherφ or ψ can be considered as the only parameter ofGL(1, c), we reduce one
of them, so that the remaining parameters, i.e. either{θ, φ} or {θ, ψ}, can be considered as
the parameters that describe the homogeneous manifoldSL(2, c)/GL(1, c) [9, 10]. If ψ is
reduced from theSL(2, c)manifold, then from the first two equations of (2.13) we obtain the
raising and lowering operators of states on the homogeneous manifoldSL(2, c)/GL(1, c):

J+(m) = ∂

∂θ
− i

2

√
A′ 2(0)− 2A′′A(0)

A(x)

∂

∂φ
− mA′(x)

2
√
A(x)

− 1

2
√
A(x)

(
AW ′

W

)′
x − A′(x)

4
√
A(x)

J−(m) = − ∂

∂θ
− i

2

√
A′2(0)− 2A′′A(0)

A(x)

∂

∂φ

− mA
′(x)

2
√
A(x)

− 1

2
√
A(x)

(
AW ′

W

)′
x +

A′(x)
4
√
A(x)

(2.16)

such that

J+(m)ψn,l,m−1(θ, φ,0) =
√
E(n,m)ψn,l,m(θ, φ,0)

J−(m)ψn,l,m(θ, φ,0) =
√
E(n,m)ψn,l,m−1(θ, φ,0).

(2.17)

In other words, with the help of equations (2.17) (or directly by reducingψ in equations (2.15)),
the shape invariance equations on the homogeneous manifoldSL(2, c)/GL(1, c) are obtained
as

J+(m)J−(m)ψn,l,m(θ, φ,0) = E(n,m)ψn,l,m(θ, φ,0)
J−(m)J+(m)ψn,l,m−1(θ, φ,0) = E(n,m)ψn,l,m−1(θ, φ,0).

(2.18)

Thus, operatorsJ+(m) and J−(m) describe the shape invariance symmetry on the
homogeneous manifoldSL(2, c)/GL(1, c) parametrized by{θ, φ}.
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As in [8, 9], we would like to point out that by this kind of parametrizing
SL(2, c)/GL(1, c) manifold and with the change of variable given in (2.3), we obtain the
metric in terms of the master function as

gij =
 1 0

0
4A(x)

A′ 2(0)− 2A′′A(0)

 (2.19)

where i and j denoteθ and φ. The Ricci scalar curvature of the metric (2.19) for the
homogeneous manifoldSL(2, c)/GL(1, c) is a constant:R = −A′′(x). In [9] for the metric
(2.19) we have derived some quantum solvable models which correspond to the Schrödinger
equation with the degeneracy groupGL(2, c) and without the degeneracy group. Here, for this
metric, we consider the Dirac equation in Minkowskian spacetime; the space part of which is
theSL(2, c)/GL(1, c)manifold and we give Dirac solvable models on theSL(2, c)/GL(1, c)
manifold in the presence of the magnetic field of a monopole such that spinors of the Dirac
equation are written in terms of the master function.

3. Master function approach to solution of the Dirac equation on the homogeneous
manifold SL(2, c)/GL(1, c)

By using equation (2.19), the Minkowskian spacetime metric for theSL(2, c)/GL(1, c)
manifold is introduced as follows [9]:

gµν =


1 0 0

0 −1 0

0 0
−4A(x)

A′ 2(0)− 2A′′A(0)

 (3.1)

whereµ andν numerate rows and columns byt , θ andφ. The Dirac equation for the spacetime
described by (3.1) is

D1+29(t; θ, φ) = 0 (3.2)

in which the Dirac operatorD1+2 is [11]

D1+2 = −iγ aEa
µ
(
∂µ − iAµ + 1

8ωµ ab[γ
a, γ b]

)
. (3.3)

The generators of Clifford algebra, i.e.γ a, are defined as

γ 0 = σ 3 γ 1 = iσ 2 γ 2 = −iσ 1 (3.4)

whereσ 1, σ 2 andσ 3 are the known Pauli matrices. With regard toγc := ηcdγ d , it is easy to
show that for the Minkowskian diagonal metricηab = (1,−1,−1), the generatorsγ a satisfy

γ aγ b = ηabI2×2 − iεabcγc. (3.5)

The 3-beinEaµ and its inverse, i.e.eµa, for the spacetime metric (3.1) must satisfy the following
relations:

Ea
µηabEb

ν = gµν

Ea
µgµνEb

ν = ηab
(3.6a)

eµ
agµνeν

b = ηab
eµ
aηabeν

b = gµν.
(3.6b)



298 H Fakhri

Also, the spin connectionωµ ab is defined by the following equation:

∂µeν
a − 0λµνeλa + ωµ

a
beν

b = 0 (3.7)

in which 0λµν are the Christoffel symbols for the metric (3.1), the only non-vanishing
components of which are

0θφφ =
−2A′(x)

√
A(x)

A′ 2(0)− 2A′′A(0)
0
φ
θφ =

A′(x)
2
√
A(x)

. (3.8)

From equations (3.6a) and (3.6b) we obtain the following for the metric (3.1) respectively,

Ea
µ =


1 0 0

0 −1 0

0 0

√
A′ 2(0)− 2A′′A(0)

2
√
A(x)



eµ
a =


1 0 0

0 −1 0

0 0
2
√
A(x)√

A′ 2(0)− 2A′′A(0)

.
(3.9)

From equation (3.7) we calculate the non-vanishing components of the spin connection

ωφ
1

2 = −ωφ2
1 = A′(x)√

A′ 2(0)− 2A′′A(0)
. (3.10)

Using these results together with equation (3.5), one can introduce the time-dependent Dirac
equation (3.2) as follows:

−∂t + iAt ∂θ +
i

2

√
A′ 2(0)− 2A′′A(0)

A(x)
∂φ − iAθ

+
1

2

√
A′ 2(0)− 2A′′A(0)

A(x)
Aφ +

A′(x)
4
√
A(x)

−∂θ +
i

2

√
A′ 2(0)− 2A′′A(0)

A(x)
∂φ + iAθ

+
1

2

√
A′ 2(0)− 2A′′A(0)

A(x)
Aφ − A′(x)

4
√
A(x)

∂t − iAt


×9(t; θ, φ) = 0. (3.11)

If we assume time evolution spinors as e−i
√
E(n,m)t and compare the Dirac equation (3.11) with

equations (2.17), the spinors of a charged spin-1
2 particle become

9n,l,m(t; θ, φ) = e−i
√
E(n,m)t9n,l,m(θ, φ)

= e−i
√
E(n,m)t

(
ψn,l,m−1(θ, φ,0)

iψn,l,m(θ, φ,0)

)
m = 0, 1, . . . , n + 1 (3.12)
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where we defineψn,l,−1(θ, φ,0) = ψn,l,n+1(θ, φ,0) = 0. From this comparison we find
that

At = 0

Aθ = −iA′(x)
4
√
A(x)

Aφ =
(m− 1

2)A
′(x) + (A(x)W ′(x)/W(x))′x√
A′ 2(0)− 2A′′A(0)

. (3.13)

The 2-form of magnetic field is calculated as

B = (m− 1
2)A

′′(x) + (A(x)W ′(x)/W(x))′√
A′ 2(0)− 2A′′A(0)

√
A(x) dθ ∧ dφ (3.14)

which, as we shall see, will be related to the magnetic monopole field on theSL(2, c)/GL(1, c)
manifold. Thus, using equation (3.11), we can find the time-independent Dirac equation in
the presence of the magnetic field (3.14):

D2(m)9n,l,m(θ, φ) =
√
E(n,m)9n,l,m(θ, φ) (3.15)

where the Dirac operatorD2(m) onSL(2, c)/GL(1, c) manifold is

D2(m) =
(

0 −iJ−(m)

iJ+(m) 0

)
. (3.16)

It is clear that by acting the Dirac operatorD2(m) from the left on both sides of equation (3.15)
we obtain the shape invariance equations (2.18), again. Thus, it shows that the shape invariance,
as discussed in the previous section, solves the Dirac equation for a charged spin-1

2 particle in
this spacetime in the presence of a magnetic monopole field. The Dirac spinors9n,l,m(θ, φ)

on theSL(2, c)/GL(1, c)manifold are expressed in terms of the master function in a compact
form.

The relation (3.14) which was obtained from the theory of representation, automatically
describes the Dirac quantization condition of the magnetic charge in terms ofm, if A′′(x) 6= 0,
i.e. if SL(2, c)/GL(1, c) is SU(2)/U(1) or SU(1, 1)/U(1) (see the appendix). We give
some of the results discussed above for some master functionsA(x) in the appendix, with
the restriction that the variablesθ and φ are real values. There, for instance, we obtain
a Dirac equation forA(x) = 1 − x2 on s2 in the presence of a magnetic monopole field
with monopole harmonics as its eigenfunctions. ForA(x) = x, the solution of the Dirac
equation is related to a constant magnetic field along the vertical to the two-dimensional flat
manifold.

4. Dirac spinors on the homogeneous manifoldSL(2, c)/GL(1, c) as anN = 1 chiral
supersymmetry algebra representation

We define chiral supersymmetry generators as a pair of suitable fermion creation and
annihilation operators [12]

Q±(m) = 1
2(I ± γ 5)D2(m) (4.1)
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with γ 5 = ( 1 0
0 −1

)
. Now, one can easily show that

D2(m) = Q+(m) +Q−(m). (4.2)

It is clear thatQ+(m) andQ−(m) are nilpotent, i.e.Q2
+(m) = Q2

−(m) = 0. Therefore, the
square of the time-independent Dirac operator, together withQ+(m) andQ−(m), form the
usualN = 1 supersymmetry algebra

D2
2(m) = {Q+(m),Q−(m)} [Q±(m),D2

2(m)] = 0. (4.3)

Thus, with regard to

Q+(m)9n,l,m(θ, φ) =
√
E(n,m)

(
ψn,l,m−1(θ, φ,0)

0

)

Q−(m)9n,l,m(θ, φ) =
√
E(n,m)

(
0

iψn,l,m(θ, φ,0)

)
D2

2(m)9n,l,m(θ, φ) = E(n,m)9n,l,m(θ, φ)

(4.4)

we can deduce that the Dirac spinors9n,l,m(θ, φ) over the homogeneous manifold
SL(2, c)/GL(1, c) are the bases of representation of theN = 1 chiral supersymmetry
algebra.

5. Spinors on the homogeneous manifoldSL(2, c)/GL(1, c) as a representation of the
shape invariance symmetry and unitary parasupersymmetry algebra

At the outset we show that the spinors introduced in section 2 form the bases for realization
of shape invariance symmetry. The appropriate operators for expressing shape invariance of
spinors are

J̃±(m) = ±i


√

E(n,m)

E(n,m− 1)
J±(m− 1) 0

0 J±(m)

. (5.1)

By using equations (2.18), it is obvious that shape invariance equations of spinors on the
homogeneous manifoldSL(2, c)/GL(1, c) are given as

J̃+(m)J̃−(m)9n,l,m(θ, φ) = E(n,m)9n,l,m(θ, φ)
J̃−(m)J̃+(m)9n,l,m−1(θ, φ) = E(n,m)9n,l,m−1(θ, φ)

(5.2)

or

J̃+(m)9n,l,m−1(θ, φ) =
√
E(n,m)9n,l,m(θ, φ)

J̃−(m)9n,l,m(θ, φ) =
√
E(n,m)9n,l,m−1(θ, φ).

(5.3)

The relations (5.3) show that spinors can be generated algebraically. Now, we show that
spinors of theSL(2, c)/GL(1, c)manifold form the bases of representation of the Rubakov–
Spiridonov [4, 6] unitary parasuperalgebra of orderp, such that 16 p 6 n + 1. Let us define
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parafermionic generatorsQ1, Q2 and the bosonic generatorH as 2(p + 1) × 2(p + 1) block
matrices:

(Q1)mm′ = J̃−(m)δm+1,m′

(Q2)mm′ = J̃+(m
′)δm,m′+1

(H)mm′ = H̃mδm,m′ m,m′ = 1, 2, . . . , p + 1

(5.4)

whereH̃m, similarly to J̃+(m) andJ̃−(m), are 2×2 matrices. GeneratorsQ1,Q2 andH , as in
[3], form a unitary parasuperalgebra of orderp, provided thatJ̃+(m), J̃−(m) andH̃m satisfy
the relations

J̃+(p − 1) · · · J̃+(2)J̃+(1)J̃−(1)J̃+(1) + · · · + J̃+(p − 1)J̃−(p − 1)

×J̃+(p − 1)J̃+(p − 2) · · · J̃+(1) + J̃−(p)J̃+(p)J̃+(p − 1) · · · J̃+(1)

= 2pJ̃+(p − 1)J̃+(p − 2) · · · J̃+(1)H̃1

J̃+(p) · · · J̃+(2)J̃+(1)J̃−(1) + J̃+(p) · · · J̃+(3)J̃+(2)J̃−(2)J̃+(2) + · · ·
+J̃+(p)J̃−(p)J̃+(p)J̃+(p − 1) · · · J̃+(2)

= 2pJ̃+(p)J̃+(p − 1) · · · J̃+(2)H̃2

J̃−(1) · · · J̃−(p − 1)J̃−(p)J̃+(p) + J̃−(1) · · · J̃−(p − 2)J̃−(p − 1)

×J̃+(p − 1)J̃−(p − 1) + · · · + J̃−(1)J̃+(1)J̃−(1)J̃−(2) · · · J̃−(p − 1)

= 2pJ̃−(1)J̃−(2) · · · J̃−(p − 1)H̃p

J̃−(2) · · · J̃−(p − 1)J̃−(p)J̃+(p)J̃−(p) + · · · + J̃−(2)J̃+(2)J̃−(2)J̃−(3) · · · J̃−(p)
+J̃+(1)J̃−(1)J̃−(2) · · · J̃−(p) = 2pJ̃−(2)J̃−(3) · · · J̃−(p)H̃p+1

(5.5)

and

H̃mJ̃−(m) = J̃−(m)H̃m+1

H̃m+1J̃+(m) = J̃+(m)H̃m.
(5.6)

Similarly to [3], one can prove that thẽHm satisfying equations (5.5) and (5.6) are

H̃m = 1

2

 E(n,m)

E(n,m− 1)
J−(m− 1)J+(m− 1) 0

0 J−(m)J+(m)


+

1

2

{
p − 2m + 1

2

(
A(x)W ′(x)
W(x)

)′
+
p2 − 3m2 + 3m− 1

6
A′′(x)

}
I

m = 1, 2, . . . , p

H̃p+1 = 1

2

 E(n, p)

E(n, p − 1)
J+(p − 1)J−(p − 1) 0

0 J+(p)J−(p)


+

1

2

{
1− p

2

(
A(x)W ′(x)
W(x)

)′
+
−2p2 + 3p − 1

6
A′′(x)

}
I

(5.7)

and that allH̃m are isospectral:

Ẽ = p − 2n− 1

4

(
A(x)W ′(x)
W(x)

)′
+
p2 − 3n2 − 3n− 1

12
A′′(x). (5.8)
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With regard to

H̃m9n,l,m−1(θ, φ) = Ẽ9n,l,m−1(θ, φ) m = 1, 2, . . . , p + 1 (5.9)

let us define�(θ, φ) as a column matrix with 2(p + 1) rows

(�(θ, φ))m := 9n,l,m(θ, φ) m = 0, 1, . . . , p (5.10)

then we have

H�(θ, φ) = Ẽ�(θ, φ). (5.11)

Therefore, the spinors9n,l,m(θ, φ) form the bases for the representation of a unitary
parasupersymmetry algebra of orderp on the homogeneous manifoldSL(2, c)/GL(1, c).
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Appendix

A(x) = 1− x2

W(x) = (1− x)α(1 +x)α−2l −16 x 6 +1 α > −1 l < 1
2(1 +α)

x = − cosθ 06 θ < 2π

ds2 = dt2 − dθ2 − sin2 θ dφ2 SL(2, c)

GL(1, c)
= SU(2)

U(1)

J+(m) = ∂

∂θ
− i

sinθ

∂

∂φ
− 2(m− l + α)− 1

2 tanθ

J−(m) = − ∂

∂θ
− i

sinθ

∂

∂φ
− 2(m− l + α)− 1

2 tanθ

B = −(m− l + α − 1
2

)
sinθ dθ ∧ dφ

E(n,m) = (n−m + 1)(n +m− 2l + 2α)

ψn.l,m(θ, φ,0) = an(−1)meilφ

[
(1− x)−(2m+2α−1)/4(1 +x)−(2m−4l+2α−1)/4

×
(

d

dx

)n−m(
(1− x)n+α(1 +x)n−2l+α

)]
x=− cosθ

.

A(x) = x2 − 1

W(x) = (x − 1)α(x + 1)α+2l +16 x < +∞ α > −1 l < − 1
2(1 +α)

x = coshθ 06 θ < +∞
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ds2 = dt2 − dθ2 − sinh2 θ dφ2 SL(2, c)

GL(1, c)
= SU(1, 1)

U(1)

J+(m) = ∂

∂θ
− i

sinhθ

∂

∂φ
− 2(m + l + α)− 1

2 tanhθ

J−(m) = − ∂

∂θ
− i

sinhθ

∂

∂φ
− 2(m + l + α)− 1

2 tanhθ

B = (m + l + α − 1
2) sinhθ dθ ∧ dφ

E(n,m) = −(n−m + 1)(n +m + 2l + 2α)

ψn.l,m(θ, φ,0) = an(−1)meilφ

[
(x − 1)−(2m+2α−1)/4(x + 1)−(2m+4l+2α−1)/4

×
(

d

dx

)n−m(
(x − 1)n+α(x + 1)n+2l+α

)]
x=coshθ

.

A(x) = x(1− x)

W(x) = x−2l(1− x)β 06 x 6 +1 β > −1 l < 1
2

x = 1
2(1− cosθ) 06 θ < 2π

ds2 = dt2 − dθ2 − sin2 θ dφ2 SL(2, c)

GL(1, c)
= SU(2)

U(1)

J+(m) = ∂

∂θ
− i

sinθ

∂

∂φ
− 2(m− l) + β − 1

2 tanθ
− 2l − β

2 sinθ

J−(m) = − ∂

∂θ
− i

sinθ

∂

∂φ
− 2(m− l) + β − 1

2 tanθ
− 2l − β

2 sinθ

B = −(m− l + 1
2β − 1

2

)
sinθ dθ ∧ dφ

E(n,m) = (n−m + 1)(n +m− 2l + β)

ψn.l,m(θ, φ,0) = an(−1)me2ilφ

[
x−(2m−4l−1)/4(1− x)−(2m+2β−1)/4

×
(

d

dx

)n−m(
xn−2l(1− x)n+β

)]
x=(1−cosθ)/2

.

A(x) = x(1 +x)

W(x) = x−2l(1 +x)β 06 x < +∞ β > −1 l < 1
2

x = 1
2(coshθ − 1) 06 θ <∞
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ds2 = dt2 − dθ2 − sinh2 θ dφ2 SL(2, c)

GL(1, c)
= SU(1, 1)

U(1)

J+(m) = ∂

∂θ
− i

sinhθ

∂

∂φ
− 2(m− l) + β − 1

2 tanhθ
− 2l − β

2 sinhθ

J−(m) = − ∂

∂θ
− i

sinhθ

∂

∂φ
− 2(m− l) + β − 1

2 tanhθ
− 2l − β

2 sinhθ

B = (m− l + 1
2β − 1

2) sinhθ dθ ∧ dφ

E(n,m) = −(n−m + 1)(n +m− 2l + β)

ψn.l,m(θ, φ,0) = an(−1)me2ilφ

[
x−(2m−4l−1)/4(1 +x)−(2m+2β−1)/4

×
(

d

dx

)n−m(
xn−2l(1 +x)n+β

)]
x=(coshθ−1)/2

.

A(x) = x

W(x) = x−2le−βx 06 x < +∞ β > 0 l < 1
2

x = 1
4θ

2 06 θ < +∞

ds2 = dt2 − dθ2 − θ2 dφ2 SL(2, c)

GL(1, c)
= H4

U(1)⊗ U(1)

J+(m) = ∂

∂θ
− i

θ

∂

∂φ
− 2m− 1

2θ
+
β

4
θ

J−(m) = − ∂

∂θ
− i

θ

∂

∂φ
− 2m− 1

2θ
+
β

4
θ

B = − 1
2βθ dθ ∧ dφ

E(n,m) = β(n−m + 1)

ψn.l,m(θ, φ,0) = an(−1)me2ilφ

[
x−(2m−4l−1)/4e

1
2βx

(
d

dx

)n−m(
xn−2le−βx

)]
x= 1

4 θ
2
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